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1 Introduction 

Snow and land ice are key elements of the water cycle in countries at high latitudes 
and at high elevations. Seasonal snow is characterised by high temporal variability. At 
a short time scale the extent and properties of the snow cover are driven by 
meteorological events, so the year-to-year variability is also very high. The variations at 
daily-to-seasonal time scales are superimposed to long-term trends in the cryosphere, 
which have been observed during the last decades and are attributed to climate 
change (Lemke et al. 2007; Serreze et al. 2000).  

The cryosphere is a critically important component of the Earth system, affecting the 
Earth’s energy balance, sea level, greenhouse gases and atmospheric circulation, 
transport of heat through ocean circulation, ecology and human resource use and well-
being (Callaghan et al. 2011). Due to the high spatial and temporal variability as well as 
inaccessible areas, satellite sensors are optimal tools for snow monitoring. Accurate 
observations of snow cover extent and physical properties are not only of interest for 
climate change research but are of great socio-economic importance.  

1.1 CryoClim cryospheric climate monitoring service 
The CryoClim project (2008-2013) developed a service for long-term systematic 
climate monitoring of the cryosphere (Solberg et al. 2014). The service provides sea 
ice and snow products of global coverage and glacier products covering Norway 
(mainland and Svalbard). The system and service is a contribution to the Global Earth 
Observation System of Systems (GEOSS) and the Global Cryosphere Watch (GCW) 
following the climate monitoring principles recommended by the Global Climate 
Observing System (GCOS). 

CryoClim is an Internet service primarily based on satellite observations. The service is 
delivered through a web service and web portal (www.cryoclim.net). The portal 
includes manual searching, viewing and downloading capabilities. CryoClim is an 
operational and permanent service for long-term systematic climate monitoring of the 
cryosphere. The product production and the product repositories are hosted by 
mandated organisations. The databases are connected over the Internet in a seamless 
and scalable network, open for inclusion of more databases/sub-services.  

1.2 CryoClim global fractional snow cover product 
The CryoClim snow product was developed in the ESA/NoSA CryoClim project (2008-
2013). It was a binary product mapping then snow cover extent (SCE). Algorithms were 
developed for single-sensor retrieval of the probability of SCE using optical and passive 
microwave radiometer (PMR) data. The probabilities were used in a novel multi-sensor 
multi-temporal fusion algorithm estimating the SCE (Solberg et al. 2015). The product 
was advanced in the ESA/NoSA Sentinel4CryoClim project (phase 1 and 2; 2015-
2018) mitigating a number of initial weaknesses and adding uncertainty information 
(Solberg et al. 2018). The ESA Snow_CCI project (Option 2; 2020-2022) advanced the 
multi-sensor multi-temporal algorithm to estimate the fractional snow cover (FSC) 
(Solberg et al. 2022). The current time series provides daily snow products of 5 km 
resolution with global coverage from 1 January 1982 until 30 June 2019. The snow 
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product time series is a unique contribution to the climate community already making 
significant interest. The time series is one of the longest available, and there are no 
other such time series of daily and full coverage for both hemispheres. The novel multi-
sensor multi-temporal algorithm has made this possible. Alternative time series have 
either much coarser resolution (due to the use of PMR data only) and are not able to 
cover the whole Earth on a daily basis (as optical data are limited by cloud cover and 
the polar night). 

The optical algorithm processes all available swaths from AVHRR GAC. The 
calculations are based on a Bayesian approach using a set of signatures (instrument 
channel combinations) and statistical coefficients. For each pixel of the swath, the 
probabilities for the surface classes snow, bare ground and cloud are estimated. The 
statistical coefficients are based on pre-knowledge of the typical behaviour of the 
surface classes in the various parts of the electromagnetic spectrum. 

The algorithm for PMR is also based on a Bayesian estimation approach. For SSM/I 
and SSMIS four snow classes were defined in order to model the snow cover. For 
SMMR two classes were considered. The algorithm estimates the probability for each 
snow class given the PMR measurements. To improve the performance of the 
Bayesian algorithm, land cover data was included. This made it possible to construct a 
Bayesian estimator for each land cover regime.  

The multi-sensor multi-temporal fusion algorithm (Rudjord et al. 2015; Solberg et al. 
2018) is based on a Hidden Markov Model (HMM) simulating the snow states based on 
observations with PMR and optical sensors. The basic idea is to simulate the states the 
snow surface goes through during the snow season with a state model. The states are 
not directly observable, but the remote sensing observations give data describing the 
snow conditions, which are related to the snow states. The HMM solution represents 
not only a multi-sensor model but also a multi-temporal model. The sequence of states 
over time is conditioned to follow certain optimisation criteria. This approach was 
originally used to determine the binary snow cover extent (SCE). 

In the most recent development (Solberg et al. 2022), the algorithm was advanced to 
estimate the fractional snow cover (FSC) down to the 1%-FSC level. This is done in 
two steps. First, more snow states were introduced to be able to estimate the snow 
cover in 10% categories. Second, we combined a histogram-equalisation approach and 
interpolation weighted by state probabilities to obtain 1%-FSC precision.  
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2 Satellite dataset 

2.1 Sensors 
2.1.1 Optical sensors 
The Advanced Very High Resolution Radiometer (AVHRR) sensor is carried on 
NOAA's Polar-orbiting Operational Environmental Satellites (POES) starting with 
TIROS-N in 1978 and on the MetOp series satellites owned and operated by 
EUMETSAT (Robel & Graumann 2014). On-board the TIROS-N, NOAA-6, 8 and 10 
POES satellites, the AVHRR sensor measures in four spectral bands (AVHRR/1), while 
on the NOAA-7, 9, 11, 12 and 14 POES satellites, the sensor (AVHRR/2) measures in 
five bands. NOAA-7 AVHRR started service 24 August 1981.The AVHRR sensor on 
NOAA-15, 16, 17, 18 and 19 and on MetOp-A and MetOp-B measures in six bands, 
though only five are transmitted to the ground at any time (AVHRR/3). NOAA-15 
AVHRR started service 13 May 1998. 

AVHRR quantisation is 10 bits. The swath width is about 3000 km, and the spatial 
resolution is 1.1 km. Spectral features have been found that discriminate most clouds 
from snow and ground cover types.  

AVHRR/3 channel 3 alternates during day and night between two wavelength intervals 
(3A during days and 3B during nights). The satellite provides coverage at least daily, 
and there are usually two satellites in orbit (morning and afternoon orbits).  

Table 2.1: NOAA AVHRR/3 channels. AVHRR/1 did not include  
band 5, and AVHRR/2 missed band 3B. 

Channel Number Wavelengths [nm] 
1 580-680 
2 725-1000 

3A 1580-1640 
3B 3550-3930 
4 10,300-11,300 
5 11,500-12,500 

 

AVHRR Level 1b data are grouped into four data types: HRPT (High Resolution Picture 
Transmission), LAC (Local Area Coverage), GAC (Global Area Coverage) and FRAC 
(Full Resolution Area Coverage).  FRAC applies only to Metop satellites. GAC data are 
available globally since about 1978. The LAC and HRPT data types are most complete 
from 1985 forward and are limited to specific areas of the world. As a general rule, 
HRPT data are available for the U.S. and coastal areas and LAC data are available 
over foreign land masses.  FRAC data is available for the entire globe since late 
October 2006. 

For GAC data, successive sets of 4 out of every 5 samples in every third scan line are 
averaged to obtain an array of data spaced at intervals of 125 msec along the scan and 
at 500 msec along the satellite track. This leads to a data rate of 49,080 
samples/minute and 2 scans/second. There are a total of 409 samples for the GAC 
data per channel per Earth scan. 
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2.1.2 Passive microwave radiometers 
The scanning multichannel microwave radiometer (SMMR) was a five-frequency 
microwave radiometer flown on the Seasat and Nimbus 7 satellites (NSIDC SMMR 
2018). Both were launched in 1978, with the Seasat mission lasting less than six 
months until failure. The Nimbus 7 SMMR lasted from 25 October 1978 until 20 August 
1987. It measured dual-polarized microwave radiances at 6.63, 10.69, 18.0, 21.0, and 
37.0 GHz (Table 2.2). 

Table 2.2: SMMR channels and characteristics. (Njoku et al., 1980) 

 

 

The Special Sensor Microwave Imager (SSM/I) is a passive microwave radiometer 
flown aboard Defense Meteorological Satellite Program (DMSP) satellites (NSIDC 
SSM/I 2018). The DMSP orbit is near circular, sun synchronous and near polar, with an 
altitude of 860 km and an inclination of 98.8°. The orbital period is 102 minutes. This 
orbit provides complete coverage of the Earth, except for two small circular sectors 2.4° 
centred on the North and South poles (Wentz, 1988). 

The SSM/I is a seven-channel total-power radiometer, which measures at four 
frequencies the linearly polarized microwave radiation emitted by the Earth-atmosphere 
system. Details concerning the radiometer setup can be found in Hollinger et al. (1987). 
Spatial resolutions vary with frequency (Table 2.3). 

Table 2.3: SSM/I channels and antenna beamwidths. IFOV= instantaneous field of view, 
EFOV = effective field of view. The corresponding bands with same frequencies and 
polarizations were used with SSMIS, except for a substitution of SSM/I 85.5 GHz with SSMIS 
91.665 GHz. (Hollinger et al. 1987) 

Channel 
Frequency 
[GHz] 

Polarization Beam width IFOV [°] 
E-Plane                         H-Plane 

EFOV on earth surface [km] 
along-               cross- 
track 

19.35 V 1.86 1.93 69 43 
19.35 H 1.88 1.93 69 43 
22.235 V 1.60 1-83 50 50 
37.0 V 1.0 1.27 37 28 
37.0 H 1.0 1.31 37 29 
85.5 V 0.41 0.60 15 13 
85.5 H 0.41 0.60 15 13 
 

Channel 
Frequency [GHz] 

Polarization Half-power 
bandwidth [°] 

6.6 V 4.56 
6.6 H 4.51 

10.69 V 2.93 
10.69 H 2.91 

18 V 1.80 
18 H 1.81 
21 V 1.50 
21 H 1.49 
37 V 0.93 
37 H 0.93 
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The Special Sensor Microwave Imager / Sounder (SSMIS) combines and extends the 
imaging and sounding capabilities of three previously separate DMSP microwave 
sensors SSM/T-1 temperature sounder, the SSMI/T- 2 moisture sounder and the 
SSM/I. SSMIS is a 24-channel, 21-frequency, linearly polarized passive microwave 
radiometer system.  

2.2 Dataset time series 
The CryoClim multi-sensor multi-temporal algorithm fuses daily optical and PMR data. 
From the description of data sources above, we see that AVHRR/2 with five channels 
are available from 24 August 1981, while SMMR is available from 26 October 1978. 
Using AVHRR/1, a time series could be created from 1978. However, two thermal 
bands are essential for cloud detection, and in particular cloud detection over snow-
covered surfaces. We have therefore chosen to start the time series from when the first 
full year of AVHRR/2 data is available, i.e. 1982.  

As data sources we have used fundamental climate data records (FCDRs) for AVHRR 
and PMR provided by EUMETSAT Climate Monitoring Satellite Application Facility (CM 
SAF) (www.cmsaf.eu). The AVHRR GAC data are described in Karlsson et al. 2016 
(ATBD) and Karlsson et al. 2017 (documentation). The PMR data are described in 
Fennig 2017 (ATBD) and Fennig 2016 (documentation). During the first couple of 
decades of the time series there were periods of flaws due to sensor or satellite 
malfunctions. After around 2000 there were several sensors of each type in orbit 
making the acquisition system much more robust and giving better coverage in space 
and time.  

The periods of PMR sensors are shown in Table 2.4, with emphasises on periods with 
flaws. To main versions of algorithms have been developed, one for SMMR and one for 
SSM/I. As the table shows, the 85 GHz channel failed for SSM/I on F8. We then 
switched to using the SMMR algorithm with corresponding and remaining SSM/I 
channels. Furthermore, the F10 satellite went into a flawed orbit and therefore 
delivered hardly usable data for an automated algorithm. We instead used F8 almost 
until F11 went into operation. In the period after F8 failure until F11 operation, we had 
to use F10.  

Table 2.4: PMR time series with start and end dates of data used. 

Satellite/sensor Start date End date Algorithm Comment 
Nimbus 7 SMMR 25.10.1978 09.07.1987 SMMR algorithm no 85 GHz channel 
DMSP F8 SMM/I  09.07.1987 01.04.1988 SSM/I algorithm fully operational 
DMSP F8 SMM/I 01.04.1989 18.12.1991 SMMR algorithm  85 GHz channel 

failed 
DMSP F10 SMM/I 18.12.1991 01.01.1992 SSM/I algorithm larger errors due to 

elliptical orbit 
DMSP F11 SMM/I 01.01.1992 ? SSM/I algorithm  
DMSP F13 SMM/I 24.03.1995 ? SSM/I algorithm  
DMSP F14 SMM/I ? ? SSM/I algorithm  
DMSP F15 SMM/I ? ? SSM/I algorithm  
DMSP F16 SMM/I ? ? SSM/I algorithm  
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DMSP F17 
SMMIS 

04.11.2006 ? SSM/I algorithm 85 GHz channel 
substituted with 
91.7 GHz 

DMSP F18 
SMMIS 

? Present SSM/I algorithm 85 GHz channel 
substituted with 
91.7 GHz 

 

The main issue with optical data has been sub-optimal acquisition time for NOAA 12 
(low solar elevation due to orbital drift). The number of AVHRRs operating in orbit 
simultaneously has increased over time. Until 1998 there was only one AVHRR 
working at a time. From 13 May 1998, with the launch of NOAA 15, two sensors or 
more were operating on NOAA and more recently also MetOp satellites. This increased 
the spatial coverage substantially.  

  



 

  CryoClim Snow Products Documentation 13 

3 Retrieval algorithms 

A description of the single-sensor (optical and passive microwave radiometer) and 
multi-sensor multi-temporal fusion algorithms are described in the following. The 
algorithm for uncertainty estimation is also described. 

3.1 Single-sensor algorithms 
A general solution for combining various data sources containing uncertain information 
is given by the Bayesian (inverse method) approach. Using this approach several 
measured variables can be combined to yield an optimal estimate. The approach is 
chosen here for single-sensor optical and passive microwave radiometer (PMR) data. It 
is based on prior knowledge of the relationship between each class and the satellite-
measured variables. In addition, knowledge of the scatter of the expected 
measurement value for each class is needed. This knowledge is expressed as a 
probability density function (PDF) for the measurement variable given for the class.  

Assume that we have n measured variables (may in general be vector observations) 
x1, x2,…,xn, that are independent, given a certain class (e.g., snow). A general 
expression is then derived for the probability of a class Sk given the measured 
variables: 

𝑃𝑃(𝑆𝑆𝑘𝑘|x1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛) =
𝑝𝑝(𝒙𝒙1|𝑆𝑆𝑘𝑘) ∙ 𝑝𝑝(𝒙𝒙2|𝑆𝑆𝑘𝑘)⋯𝑝𝑝(𝒙𝒙𝑛𝑛|𝑆𝑆𝑘𝑘) ∙ 𝑃𝑃(𝑆𝑆𝑘𝑘)

∑ 𝑝𝑝(𝒙𝒙1|𝑆𝑆𝑚𝑚) ∙ 𝑝𝑝(𝒙𝒙2|𝑆𝑆𝑚𝑚)⋯𝑝𝑝(𝒙𝒙𝑛𝑛|𝑆𝑆𝑚𝑚) ∙ 𝑃𝑃(𝑆𝑆𝑚𝑚)𝑀𝑀
𝑚𝑚=1

 Eq. 3.1 

The method works in such a way that the measurement, which gives the best 
discrimination between classes, is the one that gives most impact in the analysis. We 
do not only obtain an estimate of the most probable class, but also the uncertainty of 
this estimate. For all classes it is assumed that the features may be modelled as 
Gaussian distributions. It is further assumed that all features are uncorrelated, hence 
they are statistically independent under the Gaussian assumption.   

3.1.1 Optical algorithm 
The optical snow cover algorithm is a probabilistic algorithm that was developed for 
AVHRR data. The algorithm estimates the probabilities for the surface classes snow, 
land and cloud using a set of combinations of satellite measurements ("features") 
together with statistical coefficients. The approach is based on prior knowledge of the 
relationship between each surface class and the satellite-measured variables. The 
relationship is described by the set of statistical coefficients. 

The features are listed in Table 3.1 below. They are selected to exploit differences in 
the reflecting properties of the surface classes in various parts of the spectrum and to 
reduce variations with solar zenith angle. AVHRR channel 3A at 1.6 microns is 
particularly suited to discriminate snow and clouds, but this channel has only been 
available since 1998, and only on some of the platforms. When channel 3A is not 
available, AVHRR channel 3B at 3.7 microns is used instead. Channel 3B measures a 
combination of reflected sunlight and emitted thermal radiation. A method to estimate 
and subtract the thermal component is therefore used (Allen et al. 1990). 
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Table 3.1: Spectral features used in the optical algorithm. 

Name Description 

A06 Reflectance at 0.63 microns (AVHRR channel 1) 
R0906 Ratio of reflectance at 0.9 microns (AVHRR channel 2) to reflectance at 0.63 

microns (AVHRR channel 1) 
R1606 Ratio of reflectance at 1.6 microns (AVHRR channel 3A) to reflectance at 0.63 

microns (AVHRR channel 1) 
R3709 Ratio of reflectance at 3.7 microns (AVHRR channel 3B) to reflectance at 0.63 

microns (AVHRR channel 1) 
Tnwp-T10 Difference between the surface skin temperature from a numerical weather model 

and the 10.8 brightness temperature (AVHRR channel 4) 

 

The static coefficients used by the algorithm are listed in Table 3.2 below. 

Table 3.2: Static coefficients used in the optical snow cover algorithm.  
The spectral features are explained in Table 3.1. 

Spectral 
feature 

Snow Land Cloud 

Mean St. Dev. Mean St. Dev. Mean St. Dev. 

A06 49.68 20.97 7.933 2.126 55.85 14.79 
R0906 0.875 0.156 1.889 0.394 0.913 0.087 
R1606 0.173 0.073 1.392 0.238 0,670 0.221 
R3706 0.0273 0.026 0.369 0.117 0.190 0.133 

Tnwp-T10 2.88 2.18 2.563 2.367 12.87 9.19 

The swath products from one day are averaged and gridded into a daily product. A 
threshold is applied at 40% probability for cloud. If a pixel in the gridded product has 
the probability for the class cloud larger than 40% for all satellite passes during the 
aggregation period, the pixel is classified as cloud-covered in the final product. If there 
are one or more swath products during the aggregation period for which the probability 
for the class cloud is smaller than 40%, the probabilities for the classes snow and land 
are averaged. In this way the averaged probabilities for snow given cloud-free, and 
land given cloud-free are found. The probability for snow from the daily gridded product 
is used in the multi-sensor/multi-temporal algorithm. 

3.1.2 PMR algorithms 
The PMR approach estimates the probability for a set of classes given the PMR 
measurements. A set of features combining the PMR bands are calculated from the 
three types of sensors – SMMR, SSM/I and SSMIS.  

For SSM/I and SSMIS four classes have been defined: dry snow, wet snow, no-snow 
and snow with water (a large fraction of open water in the observed pixel). Five 
features are applied (T denotes measured brightness temperature, the number denotes 
the frequency and h and v denote the polarization): 

1. T37v - T37h 
2. T19v - T37v 
3. T22 - T85v 
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4. (1.95∙T19v - 0.95∙T19h)/0.95 
5. T22 

Feature 1 is applied by Grody & Bassist (1996) for detection of wet snow cover, 
Feature 2 and Feature 3 were used by Grody & Bassist (1996) for detection of dry 
snow cover, Feature 4 is an estimate of the surface temperature (Hiltbrunner & Mätzler 
1997), and Feature 5 is used by (Grody & Bassist 1996) to eliminate precipitation. 

Since the measured frequencies are different for SMMR (in particular the lack of 85 
GHz), the SMMR features are different. As it is more difficult to estimate wet snow 
conditions, we consider only the two classes snow and no-snow. The retrieval 
algorithm apply two different features:  
 

1. T18v - T37v 
2. T18h - T37h 

Feature 1 was suggested by Künzi et al. (1982) for detection of snow cover, while 
Feature 2 was suggested by Chang et al. (1987) for snow depth mapping. The 
polarization difference T37v-T37h feature where also considered, however, initial 
investigations showed poor performance with when using this feature for SMMR. It was 
therefore decided to use the gradient feature T18h-T37h. 

The SCE estimator for SMMR is trained by using data from 73 Global Historical 
Climatology Network Daily (GHCND) stations, whereas the SCE estimator for SSM/I is 
trained using data from 32 Surface Synoptic Observations (SYNOP) stations. All 
selected meteorological stations are in the Northern Hemisphere.  

Since the measured brightness temperature is not only dependent on the snow cover 
(and precipitation), but also the land cover, the algorithm takes land cover into 
consideration. For land cover data we use the GlobCover data set (Bicheron et al, 
2008). The data includes 23 different land cover classes and information on the forest 
density. The Bayesian SCE estimator is constructed for different groups of land cover. 
For SMMR we consider the following 11 land cover groups: 

1. Sparse vegetation and urban areas (land cover classes 150 and 190, 
respectively) 

2. Open needle-leaved evergreen forest and open broad-leaved deciduous forest 
(land cover classes 90 and 60, respectively) 

3. Mosaic forest or shrub land and mosaic grassland (land cover classes 110 and 
120, respectively) 

4. Closed to open broad-leaved evergreen forest and Closed broad-leaved 
deciduous forest (land cover classes 40 and 50, respectively). 

5. Closed needle-leaved evergreen forest (land cover class 70) 
6. Closed to open mixed broad-leaved and needle-leaved forest (land cover class 

100) 
7. Bare areas (land cover class 200) 
8. Mosaic cropland and mosaic vegetation (land cover classes 20 and 30, 

respectively). 
9. Closed to open shrub land (land cover class 130) 
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10. Close to open herbaceous vegetation (land cover class 140) 
11. Rain-fed croplands and post-flooding or irrigated croplands (land cover classes 

14 and 11, respectively). 
 

For SSM/I we have merged the land cover groups 4, 5, & 6, and 8, 9 & 10 since the 
SYNOP stations does not cover all the land cover groups. Hence, for SSM/I we only 
consider 7 groups. 

The SCE retrieval algorithm input is the PMR data, land cover data and PDFs for each 
class. If the most frequent land-cover class in the neighbourhood is water body (class 
210), or land covers that are regularly or permanently flooded (class 160, 170 and 
180), then the corresponding snow cover is set equal to zero. If the most frequent class 
is permanent snow and ice (class 220) then the snow cover is set equal to 100%. 
Otherwise, the class probabilities of each PMR observation is calculated for each 
swath. The probability swath data are then averaged over all observations that day and 
gridded, producing a daily snow probability. 

3.2 Multi-sensor multi-temporal algorithm 
The hidden Markov model (HMM) approach for the sensor fusion algorithm is 
described below. 

3.2.1 Hidden Markov model 
Figure 3.1 shows the construction of a multi-sensor state model (right) from single-
sensor state models (left). The optical model is more complex than the PMR model as 
fractional snow can be observed, which also makes it necessary to include states for 
temporary snow – giving a signal of temporary full snow cover properties. 

 

Figure 3.1: Single-sensor state model for optical (top left; original binary model) and PMR (lower 
left), and the new fused state model (right). The new model is a ten snow-cover categories 
model.  
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The model represents the following signatures: 

• Snow free: No snow signature by either PMR or optical.  
• Temp. snow 1: This is classified as snow by optical, but of low snow probability 

by PMR. 
• Snow: This is a typical dry winter snowpack identified as snow by both optical 

and PMR. 
• Snow?: This state is mainly intended to catch cloud shadows and other odd 

effects. Optical is expected to have a moderate snow signature with high 
uncertainty, while PMR shows high probability for snow. 

• Wet snow: When the snow is wet, PMR often fails to detect it. This state has a 
low expected snow probability for PMR (and with high uncertainty). In optical, 
this is classified as snow. 

• FSC snow: This indicates melting snow in the spring, where there are patches 
of bare ground appearing. The FSC values are in steps of 10% FSC with a 
range 0% < FSC < 100% in optical, but with low expected snow signature for 
PMR (and also high uncertainty) due often wet snow. 

• Temp. snow for each FSC state: These states represent precipitation of snow in 
the spring when the snow was previously melting. The snow might be dry for a 
short time but would normally quickly turn wet and melt away in a few days. 
This is seen as a strong snow signature in optical. In PMR the thin snow layer is 
assumed to be undetected. 

 
In the following paragraphs we will describe the basic hidden Markov model (HMM) 
formalism (Baum et al. 1966). In an HMM we observe a system assumed to evolve 
through a series of different states. Transitions from one state to another happen with 
certain probabilities. While in a given state, the system will produce observables with a 
certain probability density. We will denote the set of discrete states Q of the internal 
system by:  

𝑄𝑄 =  {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑣𝑣} Eq. 3.2 

where ν is the number of states. Furthermore, the time series of observations, 𝑋𝑋�, will be 
denoted by: 

𝑋𝑋�𝑇𝑇 = {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑇𝑇} Eq. 3.3 

where T is the number of elements of the sequence. The unknown state of the process 
at time t will be denoted Et, thus Et = Si indicates that the process is in state Si at time t. 
The states are not directly observable, but are related to observation Xt at time t, (t = 1, 
2, …, T) by a probability distribution of measurements: 

𝑝𝑝(𝑋𝑋𝑡𝑡|𝐸𝐸𝑡𝑡 = 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1, 2, … , 𝑣𝑣 Eq. 3.4 
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For a given time period, the model is also described by a set of transition probabilities 
between each pair of states: 

𝑝𝑝�𝐸𝐸𝑡𝑡 = 𝑆𝑆𝑖𝑖�𝐸𝐸𝑡𝑡−1 = 𝑆𝑆𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 = 1, 2, … , 𝑣𝑣 Eq. 3.5 

The probabilities of transition between the different states are obviously strongly 
dependent upon season, thus the process is not stationary, and the probabilities of 
transition are time dependent.  

The final parameters of the model are the initial conditions defined by the probability of 
being in a given state at the initial time: 

𝑝𝑝(𝐸𝐸1 = 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1, 2, … , 𝑣𝑣 Eq. 3.6 

3.2.2 Computing the optimal state sequence 
With a HMM, the notion of a class from the classification literature becomes the notion 
of a model in the HMM formalism. Traditionally, ground-cover classification in a 
temporal sequence of satellite images is the problem of assigning each grid cell in the 
scene to a class based on this cell’s signal properties (or derived properties). In the 
HMM case, our aim is to assign each grid cell to the model that best explains the 
observed temporal evolution of the cell. Solutions to this kind of problem are important 
in many applications, and several algorithms are available. For our problem we have 
chosen to use the Viterbi algorithm.  

The Viterbi algorithm is a dynamic-programming algorithm for finding the most likely 
sequence of hidden states (the Viterbi path) that results in a sequence of the 
observables. The Viterbi algorithm was proposed by Viterbi (1967) as a decoding 
algorithm for convolutional codes over noisy digital communication links. The algorithm 
requires as input the state probability density functions, the transition probabilities 
between the different states and the initial probability of each state.  

Let Vt,k be the probability of the most likely state sequence responsible for the first t 
observations that has k as its final state, then: 

𝑉𝑉1,𝑘𝑘 = 𝑝𝑝(𝑋𝑋1|𝑘𝑘)𝑝𝑝(𝐸𝐸1 = 𝑆𝑆𝑘𝑘) Eq. 3.7 

𝑉𝑉𝑡𝑡,𝑘𝑘 = 𝑝𝑝(𝑋𝑋𝑡𝑡|𝑘𝑘)𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖
�𝑝𝑝�𝐸𝐸𝑡𝑡 = 𝑆𝑆𝑖𝑖�𝐸𝐸𝑡𝑡−1 = 𝑆𝑆𝑗𝑗�𝑉𝑉𝑡𝑡−1,𝑘𝑘� Eq. 3.8 

The Viterbi path can be retrieved by saving back pointers that remember which state i 
was used in the second equation. 

The algorithm takes as input three sets of probabilities, the initial probabilities, πi, of 
each state, Si, the transition probabilities, aij, between two states, Si and Sj, and the 
probabilities, bi(Xt), of each state Si given the observation, Xt. 

Let Vt,k be the probability of the most likely state sequence responsible for the first t 
observations that has k as a final state, and let ψt(Sk) be the most probable state, Si, at 
time t – 1, given that the state at time t is Sk. 
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The Viterbi algorithm consists of four parts in order to find the most likely sequence: 

1. Initialisation: The probabilities V1,k for the different states, k, at the first step in 
the path are derived from the initial probabilities and the observations, and can 
be stated as V1,k = bk(X1)πk 

2. Recursion: For each following step (2 ≤ t ≤ T) in the sequence, the probability 
for each of the states, k, can be found recursively from the existing path of 
probabilities and transition probabilities: Vt,k = max1≤i≤v[Vt-1,iaki]bk(Xt). Likewise, 
the most probable of the states at the previous time step t – 1 for each of the 
possible current states Sk at time t, is determined as:  
ψt(Sk) = argmax1≤i≤v[Vt-1,iaki]. 

3. Termination: At the final time step, T, the most probable state is selected: STmax 

= argmax1≤i≤v[Vt,i] with its corresponding probability Pmax = max1≤i≤v[Vt,i]. 

4. Sequence backtracking: Finally, the algorithm iterates through the steps 
backwards and selects the optimal sequence of states St max from the calculated 
probabilities: St max = ψt+1(St+1 max) 

For the snow maps, the sequences corresponding to each pixel are done in parallel. 
Initialization is done for the first map in the dataset, and then the recursion is performed 
for each following map. At each step t, a map containing the most probable state ψt(Sk) 
at the previous step t-1, for each of the possible current states Sk is written to file. The 
corresponding logarithm of the probabilities (log[Vt,k]) are also written to a temporary 
file. Logarithms are used to minimize numerical errors, due to the vast range of 
possible probabilities involved. 

For the last snow map in the time series, the termination is performed. The final state 
with the highest accumulated probability, is found. Finally, the backtracking is 
performed. The algorithm iterates backwards through the dataset and selects the most 
likely state for every pixel at each time step. 

The result is the most probable time series of states for each grid cell in the product. 
This gives a product showing the estimated snow state in each grid cell. The states are 
then assigned “Snow”, “Snow free” or corresponding 10% FSC category. 

3.2.3 Estimating FSC at 1%-precision level 
From this model, an algorithm is developed to estimate FSC with a resolution of 1% by 
averaging over several states. Using the HMM with 10% resolution and the Viterbi 
algorithm, a snow state is found for each time step as described above. This will in the 
following be referred to as the primary state. Furthermore, a secondary state is also 
found for each time step. This is found by the following additions to the Viterbi 
algorithm:  

• In step 2 (Recursion), the second most probable state, ψs
t(Sk), at the previous 

time step t – 1 for each of the possible current states, Sk, at time t, is also found, 
as follows ψs

t(Sk) = argmax1≤i≤v,i≠imax[Vt-1,iaki]. Here imax is the index found 
previously, giving the most likely state.  
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• In step 3 (Termination), the second most probable state is also selected, STmax,s 

= argmax1≤i≤v,i≠imax[Vt,i], with its corresponding probability Pmax,s = max1≤i≤v,i≠s[Vt,i]. 
This is the secondary state for the final time step, T. 

• In step 4, during sequence backtracking, the algorithm also selects the second 
most probable state, St max,s  for each time step in the sequence based on the 
calculated probabilities: St max,s = ψs

t+1(St+1 max). 

If the primary state is found to be in one of the states of either full snow cover, or a 
snow-free state, the secondary state is ignored. The secondary states are only used 
together with the primary states when the primary state for a given time step is one of 
the partial snow cover states, 0% < FSC < 100%, or one of the corresponding states 
for temp. snow. In these cases, the FSC estimate is found as the average of the FSC 
of these two states, where the probabilities of the states are used as weights, as 
follows: 

FSCt = [Pmax,s FSC(St max,s) + Pmax FSC(St max)] / (Pmax,s + Pmax) Eq. 3.9 

The optical and PMR snow probabilities are input to the multi-sensor/multi-temporal 
algorithm. The data probabilities, bi(Xt), of each state, Si, given the observation Xt, are 
found assuming a multivariate distribution (see Solberg et al. 2018 for details).  

The original algorithm used a Gaussian multivariate distribution. However, when 
interpolating between primary and secondary states, this is no longer suitable. Due to 
the shape of the Gaussian distribution, the primary state would have a considerably 
higher probability than the secondary state and would therefore dominate the FSC 
estimate. This would cause certain FSC values to be considerably overrepresented.  

Student’s t-distribution has a more slowly diminishing tail, and therefore provides more 
even balance between the primary and secondary states. It is found that using this 
distribution with five degrees of freedom (ν = 5), a more realistic distribution of FSC 
estimates is obtained.  

The distribution of FSC values still contains some artifacts, however. Physically, we 
expect that the FSC values for partial snow cover (i.e., excluding full snow cover, 
100%, and bare ground, 0%, should be relatively evenly distributed. The pattern we 
see is increasing values up to a peak exactly every 10% of FSC. This repeating pattern 
is artificial, and matches the intervals used in the algorithm. We therefore performed a 
histogram transformation to reduce this artifact in the data. 

We used a histogram equalization to flatten the histogram, making it closer to uniform. 
As we want to compensate for these artifacts only, and not real variations in FSC 
distributions, we based the transformation on the repeating pattern. Each interval 1-10, 
21-30, etc. was transformed separately. 

The transform was trained on all the FSC products from the Northern Hemisphere from 
three years over a twenty-year period. In order to transform any float value, an 
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analytical expression of the transform was found. A 3rd degree polynomial was fit to the 
cumulative histogram, giving coefficients 

𝑐𝑐0 = −0.866015, c1 = 0.988041, c2 = −0.213079, c3 = 0.0212775 

The transformed FSC values were then found from the original FSC values the 
following way: 

1. Transform to the short segment: 𝑚𝑚 = (𝐹𝐹𝑆𝑆𝐹𝐹 − 1) 𝑚𝑚𝑚𝑚𝑚𝑚10 + 1.5 

2. Perform histogram equalization: 𝑦𝑦 = 𝑐𝑐3𝑚𝑚3 + 𝑐𝑐2𝑚𝑚2 + 𝑐𝑐1𝑚𝑚 + 𝑐𝑐0 

3. Transform back to FSC values: 𝐹𝐹𝑆𝑆𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦 + 𝐹𝐹𝑆𝑆𝐹𝐹 − 𝑚𝑚 

Since this is intended as a transform to equalize FSC values for partial snow cover, 
FSC values of 0% and 100% are not transformed.  

3.2.4 Auxiliary data 
The classification of PMR data is stratified into different land cover types as the 
measured brightness temperature is not only dependent on the snow cover (and 
precipitation), but also the land cover. The algorithm takes the land cover into 
consideration. For land cover data, we use the GlobCover data set (Bicheron et al. 
2008). The data includes 23 different land-cover classes and information on the forest 
density. The Bayesian SCE estimator is constructed for different groups of land cover.  

A land mask is applied for retrieval of FSC, which specifies the exact domain for 
retrieval. The mask represents the actual land area with areas of land ice removed. 
Lakes smaller than the 300 m in extent have also been removed in the original data. 
Resampling to 5 km spatial resolution removed water bodies of extent less than 5 km. 
The source of the land, waterbody and land ice masks is GlobCover version 2.2 used 
(Bicheron et al. 2008). 

The optical algorithm needs model surface temperature from numerical weather 
prediction. The model surface temperature (skin temperature) is used in combination 
with brightness temperature measured at 10.8 microns (AVHRR channel 4) as the 
fourth measured feature in the algorithm (Table 3.1). When processing AVHRR GAC 
data for 1982–2019, the model surface temperature is collected from ECMWF ERA 
interim. The model temperature is interpolated into the satellite swath grid using linear 
interpolation in time and space. A precise model temperature is essential for the fourth 
feature (Tnwp-T10) to correctly identify cold clouds. If the gap between the real 
temperature and the interpolated modelled temperature becomes too large, this may 
push the algorithm towards erroneous classification. 

3.3 Uncertainty estimation 
The uncertainty is estimated using a logistic regression analysis, where the 
independent variables are the time interval to nearest cloud-free optical observation, 
the surface temperature (estimated from PMR data), and the average data log-
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likelihood of the snow states. The target variables are status of the decision of our FSC 
algorithm, correct or incorrect, validated by in-situ measurements. 

3.3.1 Time interval to nearest cloud-free optical observation 
In general, the optical sensors provide more reliable data for estimating the FSC than a 
passive microwave radiometers (PMR). However, under cloudy conditions we only 
have the PMR data available.  

In previous work (Solberg et al. 2018), we noticed that the accuracy decreases when 
the time to/from the next/last cloud-free optical observation increases. The trend is not 
as clear for this product, where we observe no clear correspondence between the 
RMSE and the time to optical observation. 

3.3.2 Passive microwave surface temperature  
For SSM/I, an estimate of the surface temperature is given as 

𝑇𝑇 =
1.95 ⋅ 𝑇𝑇19𝑣𝑣 − 0.95𝑇𝑇19ℎ

0.95
 Eq. 3.10 

where 𝑇𝑇19𝑣𝑣 and 𝑇𝑇19ℎ denotes measured brightness temperature at 19 GHz for vertical 
and horizontal polarizations, respectively. For the SMMR sensor, we apply the 
corresponding 18 GHz brightness temperatures. 

From previous exploratory data analysis (Solberg et al. 2018), we observed that the 
accuracy was lower for surface temperature between about 0 and 20°C with a 
minimum at 16°C. A similar observation was observed for AVHRR in the Snow_CCI 
project, where the RMSE of the FSC was highest for a brightness temperature (band 4) 
of 2°C. For this product, we observe a decreasing RMSE for increasing surface 
temperature up to about 300 K. For temperatures above 300 K the RMSE is zero. 

3.3.3 Data log-likelihood for the no-snow state 
In the Snow_CCI AVHRR product uncertainty layer, we observed a correlation between 
the band 1, band 3b and the solar incidence angle, in addition to band 4. For CryoClim 
FSC, the AVHRR data may not be available at the corresponding date and location due 
to cloud conditions.  

In the CryoClim SCE binary product, we noticed that the average data log-likelihood of 
the snow states is a measure of uncertainty. A similar dependence was observed here. 
The RMSE decreases for increasing data log-likelihood values of the no-snow state.  

The independent variables are based on the surface temperature, the time interval to 
nearest cloud-free optical observation, and the data log-likelihood for the no-snow 
state. However, similar to AVHRR in the Snow_CCI baseline project, we estimate the 
RMSE of the FSC, and establish the logistic regression model using reference data 
extracted from Landsat data of much higher resolution. 

3.3.4 Motivation of choice and algorithm  
A systematic error-analysis approach was selected and applied. A key observation 
from the Snow_CCI baseline project exploratory data analysis (EDA) was that the 
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statistical error (computed using error propagation) contributed little to the RMSE, and 
for some features, the modelled statistical error was larger than the observed RMSE. 
The systematic error more or less constituted the whole RMSE.  

Since the RMSE is bound by 0 and 100, we estimate the RMSE using a logistic 
regression approach. We assume that squared error (RMSE) for the 𝑖𝑖th pixel follows a 
binomial distribution with an 𝑛𝑛 parameter equal to 100. The expectation of a binomial 
random variable 𝑋𝑋𝑖𝑖 is given by 𝐸𝐸[𝑋𝑋𝑖𝑖] = 𝑝𝑝𝑖𝑖. Using a generalized linear model (GLM) with 
a logit link function 𝑔𝑔(𝜇𝜇𝑖𝑖) ≜ 𝜂𝜂𝑖𝑖 = log 𝑝𝑝𝑖𝑖 /(1 − 𝑝𝑝𝑖𝑖), where 𝜇𝜇𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖].  

In general, for a set of independent variables f𝑖𝑖1, f𝑖𝑖2, … , f𝑖𝑖𝑁𝑁, we model 𝜂𝜂𝑖𝑖 as 

𝜂𝜂𝑖𝑖 = 𝑚𝑚0 + 𝑚𝑚1 ⋅ 𝑓𝑓𝑖𝑖1 + 𝑚𝑚2 ⋅ 𝑓𝑓𝑖𝑖2 + ⋯+ 𝑚𝑚𝑁𝑁 ⋅ 𝑓𝑓𝑖𝑖𝑁𝑁. Eq. 3.11 

From these equations, the pixel-wise RMSE is estimated as 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 =
𝑒𝑒𝑚𝑚𝑝𝑝 (𝜂𝜂)

1 + 𝑒𝑒𝑚𝑚𝑝𝑝 (𝜂𝜂)
. Eq. 3.12 

To evaluate the goodness of the approach, we perform cross-validation over the 186 
Landsat images that constitute the reference data. Hence, we leave one reference 
image out, estimate the model from the remaining 185 reference images, and predict 
the RMSE for each pixel in the hold-out reference image. Finally, we compute the 
average “ground truth” RMSE and average predict RMSE for the hold-out reference 
image and plot the values. In this cross-validation experiment, the RMSE and bias of 
the estimated RMSE is 15.6 and 0.07 respectively, and the 𝑅𝑅2 is 0.16. We also note 
that the ground truth RMSE are very high for some images.  

The RMSE for CryoClim FSC will be estimated as: 

𝜂𝜂 = 15.05− 0.051 ⋅ 𝑙𝑙𝑙𝑙𝑠𝑠 + 0.019 ⋅ |𝑚𝑚| − 0.061 ⋅ 𝑇𝑇 Eq. 3.13 

where 𝑇𝑇 is the surface temperature estimated by the PMR data, |𝑚𝑚| is the time interval 
to nearest cloud-free optical observation and 𝑙𝑙𝑙𝑙𝑠𝑠 is the data log-likelihood of the no-
snow states. 
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4 Validation 

The validation of the Snow_CCI OP-2 CryoClim FSC product and corresponding 
uncertainty estimates, served two overall objectives: 

1. Study performance of the new CryoClim FSC product relative to the previous 
CryoClim SCE v. 2.0 binary product. 

2. Study performance of the new CryoClim FSC product with respect to the 
Snow_CCI baseline project. 

The first objective was to ensure that the new FSC product has similar performance as 
the previous SCE binary product after the development of the modified retrieval model 
for the algorithm to handle FSC. It also serves as documentation of the overall 
performance compared to previous versions of the CryoClim product. 

The second objective is driven by the goals of the Snow_CCI project using the same 
dataset as the baseline project to analyse and document the relative performance of 
the new CryoClim FSC product compared to the other FSC products in the Snow_CCI 
baseline project. 

4.1 Validation with in-situ measurements 
The quality of the CryoClim FSC product has been validated in different areas of 
varying topography and land use. Ground-based measurements (in-situ data) are an 
excellent source but represents usually only information for a certain point. High-
resolution optical satellite data with its greater spatial coverage can fill the gap between 
point measurements and coarser resolution products.  

Four datasets are suitable for the purpose of validation against in-situ data. The Global 
Historical Climatology Network - Daily (GHCN-D) dataset (Menne et al. 2012) was used 
initially in the CryoClim project and was in the Sentinel4CryoClim project extended and 
refined. Furthermore, we used the, by several authors in the snow research 
community, recommended high-quality datasets from the former Soviet Union (see, 
e.g., Brun et al. 2013). These are the Historical Soviet Daily Snow Dataset (HSDSD) 
Version 2 dataset (Armstrong 2001), the Former Soviet Union Hydrological Snow 
Surveys (FSUHSS) dataset (Krenke 2004) and Snow Cover Characteristics from 
Russian Meteorological Stations and from some meteorological station over the Former 
USSR provided by RIHMI-WDC (RHIMI) (Bulygina et al. 2010). 

4.2 Validation with high-resolution satellite imagery 
Snow reference data derived from Landsat sensors (Thematic Mapper family) and 
Sentinel-2 (Multispectra Imager) offers excellent resolution and spectral information to 
generate high-resolution reference snow maps. A validation dataset based on Landsat 
data was prepared in the Snow_CCI baseline project. This dataset has also been used 
for validation of the CryoClim FSC product. All reference snow maps were re-projected 
in the geographic map projection on WGS84 ellipsoid and aggregated to a fractional 
snow cover extent at the resolution of 0.05°. For characterising the results of the pixel-
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by-pixel inter-comparison, the statistical measures bias, root mean square error 
(RMSE), unbiased RMSE and cross-correlation are used.  

4.3 Validation results 
The validation based on in-situ data shows that the accuracy of the FSC product varies 
by year and season. Yearly overall accuracy is found to be mostly between 90 and 
94%, with some exceptions. The seasonal variation in accuracy is stronger, giving 
monthly accuracies between 85 and 100% for the year 2014. 

Based on in-situ data, the CryoClim FSC product and the CryoClim SCE v. 2.0 binary 
product show very comparable results. The overall accuracy of the two products is 
similar. There are, however, some differences in trends, as the binary product performs 
better in the period using PMR data from the SMMR sensor, while the FSC product 
performs better in the period using the SSM/I F8 sensor. The reason for this difference 
is unclear. The seasonal trends for the two products appear comparable.  

The validation using high-resolution satellite imagery was based on 543 high-resolution 
(HR) Landsat scenes where snow maps were derived by three different retrieval 
algorithms. The CryoClim FSC product was compared with the HR-derived snow maps 
in FSC product resolution. CryoClim FSC represents snow on ground (SCFG). The 
overall accuracy is high showing an RMSE in the order of 16% and a bias lower than 
2.4%. Separating open and forested areas, show very good performance in open areas 
(13-14% RMSE), and also quite good results for forested areas (17-18% RMSE). When 
considering FSC aggregated in steps of 10%, a tendency to overestimate the SCF for 
higher values was found, including an increase of the RMSE. 

For the validation of CryoClim FSC uncertainty estimates, a general overestimation of 
the uncertainty of 2-3% was found. The RMSE was around 15%, indicating a large 
variance of the error in the provided uncertainty layer. 
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5 Product description 

The overall aim of the CryoClim fractional snow cover (FSC) climate data record is to 
provide one of the longest snow cover extent time series available with global coverage 
and without hindrance from clouds and polar night. This has been achieved by utilising 
the best features of optical and passive microwave radiometer (PMR) observations of 
snow using a sensor-fusion algorithm generating a consistent time series of global FSC 
products (Solberg et al. 2014, 2015, 2018, 2022; Rudjord et al. 2015).  

5.1 Overall description 
AVHRR sensors aboard the satellites NOAA-7, -9, -11, -14, -16, -18, -19 have been 
used as the optical data source, and SMMR aboard the Nimbus 7 satellite, and SSM/I 
and SSMIS sensors aboard the DMSP F8, DMSP F11, DMSP F13, DMSP F14, DMSP 
F15, DMSP F16, DMSP F17 and DMSP F18 satellites, respectively, have been used 
as PMR data source. The CryoClim multi-sensor multi-temporal concept for fusion of 
optical and PMR data for retrieval of FSC is based on a hidden Markov model (HMM) 
where 10%-level FSC states are modelled. The last part of the algorithm carries out a 
weighted interpolation between 10%-FSC states to reach 1%-FSC precision. 

The FSC product represents snow cover on the ground and is processed in a 5 km grid 
resolution and finally projected to a latitude/longitude grid of 0.05° resolution (Table 
5.1). The time series characteristics are provided in Table 3.1. A product example is 
provided in Figure 5.1 (FSC) and Figure 5.2 (associated uncertainty). There are no 
data gaps in the time series. However, there are periods of reduced product quality due 
to sensor problems or missing data in the 1980s and 1990s (Table 5.2, Table 5.3). 

Table 5.1: CryoClim FSC time series characteristics. 

Subject  CryoClim Fractional Snow Cover CRDP prototype version 

Variable Fractional snow cover [%] 

Accuracy target 10-20% unbiased RMSE 

Retrieval algorithm Solberg et al. 2014, 2015, 2018, 2022; Rudjord et al. 2015; adapted from binary to FSC 

Uncertainty algorithm Salberg et al. 2022 

Satellite(s) NOAA-7, -9, -11, -14, -16, -18, -19; Nimbus-7, DMSP F8, - F10, - F11, - F13, - F14, - F15, 
- F16, - F17 and - F18 

Sensor(s) AVHRR, SMMR, SSM/I and SSMIS 

Input product(s) Level-1B FCDRs from EUMETSAT CM SAF 

Geographical domain(s) Global 

Start date time series 01.01.1982 

End date time series 30.06.2019 

Grid size 5 km 

Projection/datum EASE Grid 2.1 / WGS 84 

Temporal resolution Daily 

Temporal aggregation None 

Number of layers 5 
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Subject  CryoClim Fractional Snow Cover CRDP prototype version 

Metadata Global attributes in NetCDF4 file, CF-v1.9, conformal with CCI data standards v2.3, 
26/07/2021 

Auxiliary data The source of the land, waterbody and land ice masks is GlobCover version 2.2 (Bicheron 
et al. 2008). Historical model temperature data from ERA-Interim global atmospheric 
reanalysis (Dee et al. 2011) is used to cover the optical snow cover algorithm’s need for 
model surface temperature data 

Data representation Unsigned byte (8 bits) 

File format NetCDF4, CF-v1.9 

Product access www.cryoclim.net 

 

 
 

Figure 5.1: Example of daily fractional snow cover (FSC) maps for Northern Hemisphere on 15 
January 2004 (left) and Southern Hemisphere on 15 July 2004 (right). 

 

Figure 5.2: Example of a SCE retrieval uncertainty map for 27 February 2004. 

 

15 January 2004 15 July 2004
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5.2 Time series characteristics 
The periods of reduced product quality are briefly explained in the following (Table 5.2). 
Biases associated with Nimbus 7 SMMR and DMSP F-8 SSM/I have been observed, in 
particular in the summer period with almost only wet and patchy snow present.  

SMMR did not have the 85 GHz channel and had a somewhat different set of channel 
frequencies. The 85 GHz channel on the first SSM/I instrument failed early in the 
mission. The lack of 85 GHz channels on both satellites and the channel differences 
between the instruments have resulted in somewhat variable retrieval algorithm 
performance. A tailored algorithm is used with data from Nimbus 7 and DMSP F-8. 
However, the performance deviate from that of the algorithm we use with other SSM/I 
and SSMIS instruments. A positive bias appears in the retrieval results, and it is largest 
for DMSP F8. The problem seems to be associated with patchy (and probably wet) 
snow cover. The bias seems to be most pronounced in the summer season. We 
recommend caution for regions of patchy/wet snow in the summer period for the years 
1982-1991. 

There are periods of unfavourable illumination conditions with the early NOAA 
satellites. The NOAA satellites do not include any system to stabilise their orbit, 
resulting in orbital drift and therefore acquisitions progressively earlier (for morning 
satellites) and later (for afternoon satellites). At very low solar angles, the discrimination 
power of the optical retrieval algorithm is reduced, resulting in more mixture between 
snow and clouds. The problem is most prominent when data from only one satellite is 
available (in particular NOAA-12). When more satellites became available and 
satellites were launched into an orbit with equatorial passage time closer to noon in the 
late 1990s, the problem became less pronounced. In the last 20 years there has been 
more redundancy (more sensors in orbit) and therefore no periods of reduced quality.   

Table 5.2: Periods of reduced product quality in the CryoClim FSC time series.  

Start date End date Reason 

01.01.1982 09.07.1987 Reduced discrimination power due to fewer channels on Nimbus 7 SMMR 

01.04.1989 18.12.1991 Loss of 85.5 GHz channel DMSP F8 SSM/I 

18.12.1991 01.01.1992 Larger acquisition errors due to elliptical orbit 

14.09.1994 19.01.1995 Unfavourable illumination conditions due to dependency on NOAA 12 
only 

 

For the whole time series, there are 27 days with neither optical nor PMR retrieval 
(Table 5.3). These are individual days and not series of days in a row. The multi-sensor 
time-series algorithm handles this by making a best estimate of snow cover, based on 
days both prior to and following after the lack of data. This will not reduce the quality of 
the snow maps much for days without data as long as they are just individual days.   

Table 5.3: List of days with no input data (neither optical nor PMR for either 
hemisphere).  
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Dates with no satellite data 

19820529 
19820531 
19820926 
19830727 
19830729 
19830731 
19830802 

19830806 
19830921 
19830923 
19830925 
19840115 
19840410 
19840723 

19841206 
19850204 
19850206 
19850208 
19850210 
19850212 
19850214 

19850216 
19850218 
19850220 
19850222 
19850224 
19860315 

 

The algorithm estimating the uncertainty associated with the FSC maps needs 
observations of covariates from the same day as the time stamp of the FSC product. 
These covariates are partly based on data from PMR sensors. Hence, estimates of 
uncertainty could not be produced for days lacking PMR acquisitions (Table 5.4). 

Table 5.4: Overview over days per year with no uncertainty estimate for either 
hemisphere.  

Year Number of days without uncertainty estimate 

1982 5 
1983 14 
1984 5 
1985 22 
1986 1 
1988 6 
2008 2 

 

5.3 Known strengths and limitations  
5.3.1 Strengths 
The product provides the fraction of snow cover on the ground per grid cell on global 
land areas, except for glaciers. The data record provides one of the longest snow cover 
time series available with global coverage and without hindrance from clouds and polar 
night on a daily temporal resolution. The spatial resolution of the product, 5 × 5 km grid 
size, is high compared to other available satellite-based global snow products providing 
full spatial coverage on a daily basis year around (i.e. also for areas covered by clouds 
and polar night), which are all based on PMR data only of typically 10-25 km resolution. 
The product provides snow on the ground, compensating potential obstructed view 
from vegetation canopy. The product quality is high, as validation results gave an 
overall accuracy with an RMSE in the order of 16% and a bias lower than 2.4%. The 
product comes with uncertainty estimates on the grid-cell level. 

5.3.2 Limitations 
The quality of the input data was not optimal all through the first two decades of the 
time series due to sensor limitations, sensor-band failures and orbital drift of satellites. 
Biases associated with Nimbus 7 SMMR and DMSP F-8 SSM/I have been observed, in 
particular in the summer period with almost only wet and patchy snow present. SMMR 
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did not have the 85 GHz channel, and the channel failed on DMSP F-8 after a period. 
The bias seems to be most pronounced in the summer season. We therefore 
recommended caution for regions of patchy/wet snow in the summer period for the 
years 1982-1991. There are periods of unfavourable illumination conditions with the 
early NOAA satellites due to orbital drift and less favourable passage timing over time. 
The problem is most prominent when data from only one satellite is available (in 
particular for NOAA-12). When more satellites became available and satellites were 
launched into an orbit with equatorial passage time closer to noon in the late 1990s, the 
problem became less pronounced. In the last 25 years or so there has been more 
redundancy (more sensors in orbit) and therefore no periods of reduced quality.   

5.4 Product encoding 
The product is composed of five layers, which are described in the following. 

5.4.1 Snow cover extent (Layer 1) 
The thematic content is snow cover extend (SCE) per grid cell retrieved by the multi-
sensor multi-temporal algorithm. The snow cover is described by categorical values 
representing binary snow cover (snow/no-snow). The effective fractional snow cover 
(FSC) threshold is aimed to be close to 50%. Even if the algorithm aggregates data 
throughout the day, the map is intended as an estimate of the snow situation at noon. 
Values are represented as 16 bits signed integer. The encoding scheme applied for 
snow and other map categories are explained in Table 5.5 together with the colour 
table values applied in the map example. 

Table 5.5: The encoding scheme for Layer 1 and suggested colour table values for 
visualisation. 

Code Description R G B Colour 
0 No data 0 0 0  

41 Water body 60 180 245  
43 Land ice 105 255 205  

100-125 FSC = 0-25% 4 130 4  
126-150 FSC = 26-50% 86 171 86  
151-175 FSC = 51-75% 170 212 170  
176-200 FSC = 76-100% 254 254 254  
 
5.4.2 Uncertainty estimate (Layer 2) 
The content is uncertainty estimate of the retrieved FSC per grid cell. Values represent 
the estimated root mean square error (RMSE). The range of RSME is 0.0 – 1.0. Values 
are represented as 32 bits floating point. The encoding scheme applied is explained in  

Table 5.6. 

 

Table 5.6: The encoding scheme for Layer 2 and suggested colour table values for 
visualisation. Note that water body and land ice are retrieved from Layer 1 (SCE). 

Code Description R G B Colour 
-1 No uncertainty estimate 0 0 0  
41 Water body 60 180 245  
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43 Land ice 105 255 205  
100-105 RMSE = 0.0-5.0% FSC 1 106 56  
106-110 RMSE = 5.6-10.0% FSC 135 203 103  
111-115 RMSE = 10.1-15.0% FSC 253 199 118  
116-120 RMSE = 15.1-20.0% FSC 165 110 60  
121-125 RMSE = 20.1-25.0% FSC 165 75 60  

>125 RMSE > 25.0% FSC 165 0 38  
 
 
5.4.3 Land mask (Layer 3) 
The land mask applied for retrieval of SCE, which documents the exact domain for 
SCE retrieval. The mask represents the actual land area with areas of land ice 
removed. Lakes smaller than the 300 m in extent have also been removed in the 
original data. Resampling to 5 km spatial resolution removed water bodies of extent 
less than 5 km. The source of the land, waterbody and land ice masks is GlobCover 
version 2.2 used (Bicheron et al. 2008). Values are represented as 8 bits unsigned 
integer. 

5.4.4 Latitude (Layer 4) 
Latitude for each grid cell in the product. Values are represented as 32 bits floating 
point. The coordinate values represent the centre position in the product grid. 

5.4.5 Longitude (Layer 5) 
Longitude for each grid cell in the product. Values are represented as 32 bits floating 
point. The coordinate values represent the centre position in the product grid. 

5.5 Metadata description 
The metadata are according to the netCDF CF convention (version 1.4). The 
conventions define metadata that provide a definitive description of what the data in 
each variable represents, and the spatial and temporal properties of the data. The data 
are included in the same file as the data, thus making the file "self-describing". The 
global attributes are listed in Table 5.7. 

Table 5.7: NetCDF CF global attributes for a product from the Southern Hemisphere. 

Name Value 
title Snow cover for Southern 

Hemisphere 
southernmost_latitude -90.0 [float value] 

northernmost_latitude 0.0 [float value] 

westernmost_longitude -179.968 [float value] 

easternmost_longitude 180.0 [float value] 

area Southern Hemisphere 

projection ease 

resolution 5.0 km 

source NA 

institution Norwegian Computing 
Center 

history 2019-01-05 creation 

conventions CF-1.4 
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PI_name CryoClim Snow and Ice 
Manager 

abstract Binary snow cover prototype 
product estimated from 
optical and passive 
microwave satellite data for 
the CryoClim project 

activity_type Space borne instrument 

contact cryoclim@met.no 

distribution_statement Free 

keywords Snow Cover,Terrestrial 
Snow, Oceanography, 
Meteorology, Climate, 
Remote Sensing 

product_name cryoclim_snow_cover_reproc 

project_name CryoClim 

start_date 2004-01-01 00:00:00 

stop_date 2004-01-02 00:00:00 

topiccategory Climatology Meteorology 
Atmosphere 

gcmd_keywords Cryosphere > Snow/Ice > 
Snow Cover, Terrestrial 
Hydrosphere > Snow/Ice > 
Snow Cover, AVHRR > 
Advanced Very High 
Resolution Radiometer, 
SSM/I > Special Sensor 
Microwave Imager 

 

5.6 Product format, storage and access 
The file format of the product, product file name convention and product access are 
explained in the following. 

5.6.1 File format 
The product is stored in the Network Common Data Form (netCDF) format and based 
on the Climate and Forecast (CF) conventions and metadata. NetCDF is a self-
describing, machine-independent data format that supports the creation, access, and 
sharing of array-oriented scientific data. The data format is "self-describing", which 
means that there is a header describing the layout of the rest of the file, in particular the 
data arrays, as well as arbitrary file metadata in the form of name/value attributes. The 
CF convention defines metadata that provide a definitive description of what the data in 
each variable represents, and of the spatial and temporal properties of the data. This 
enables users of data from different sources to decide which quantities are 
comparable, and facilitates building applications with extraction, re-gridding and display 
capabilities.  

Software providing read/write access to netCDF files, encoding and decoding the 
necessary arrays and metadata are supplied by University Corporation for Atmospheric 
Research (UCAR) and others (https://www.unidata.ucar.edu/software/netcdf). A 
convenient viewer is Panople (https://www.giss.nasa.gov/tools/panoply). Users 
preferring the Hierarchical Data Format (HDF) might use conversion tools (available at 
https://www.hdfeos.org/software/tool.php#nco). 
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The endianness (byte order) of product data is little-endian (the least-significant byte is 
stored first). 

5.6.2 File-name convention 
The SCE product files are named according to the following convention:  

daily-multi-sce-<hemisphere>_ease-50_<year><month><day><hour><minutes>.nc 

where 

<hemisphere> is either ‘nhl’ (Northern Hemisphere land) or ‘shl’ (Southern 
Hemisphere land)   

<year> is year of acquisition (Gregorian calendar) 

<month> is month of acquisition (Gregorian calendar) 

<day> is day of acquisition (Gregorian calendar) 

<hour> is hour of acquisition (apparent solar time) 

<minutes> is minutes of acquisition (apparent solar time) 

Note that the time stamp <hour><minutes> is fixed to ‘1200’ (meaning 12:00, noon, 
apparent solar time) is fixed and represent the local time of each grid cell for which the 
SCE value is an estimate for.  

Example: ‘daily-multi-sce-nhl_ease-50_200401011200.nc’  
is the daily (noon) SCE product for 1 January 2004 for the Northern Hemisphere.  

5.6.3 Access 
The products are stored at a file server with the Norwegian Meteorological Institute 
available through the CryoClim portal hosted by the Norwegian Computing Center. The 
portal web address is www.cryoclim.net. For questions, please contact cryoclim@nr.no. 
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